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ABSTRACT   

Synthetic aperture radar (SAR) image is independent on atmospheric conditions, and it is the ideal image source for 
change detection. Existing methods directly analysis all the regions in the speckle noise contaminated difference image. 
The performance of these methods is easily affected by small noisy regions. In this paper, we proposed a novel change 
detection framework for saliency-guided change detection based on pattern and intensity distinctiveness analysis. The 
saliency analysis step can remove small noisy regions, and therefore makes the proposed method more robust to the 
speckle noise. In the proposed method, the log-ratio operator is first utilized to obtain a difference image (DI). Then, the 
saliency detection method based on pattern and intensity distinctiveness analysis is utilized to obtain the changed region 
candidates. Finally, principal component analysis and k-means clustering are employed to analysis pixels in the changed 
region candidates. Thus, the final change map can be obtained by classifying these pixels into changed or unchanged 
class. The experiment results on two real SAR images datasets have demonstrated the effectiveness of the proposed 
method. 
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1. INTRODUCTION  
Image change detection is a process to identify the differences from two multi-temporal images which are captured 

from the same geographical area. It has been widely used in numerous fields, such as environmental monitoring [1], haz-
ard assessment of earthquake [2], medical diagnosis [3] and urban sprawl detection [4]. Thus change detection plays an 
important role in practical applications. Compared with other remote sensing images such as optical images, hyperspec-
tral images and LIDAR images, synthetic aperture radar (SAR) images presents better performance since SAR sensors 
are independent of weather conditions. Therefore, SAR image is the ideal source to perform change detections. However, 
with the presence of speckle noise, SAR image change detection encountered more difficulties than optical images. 

In recent years, there are many change detection techniques have been proposed. These techniques are generally 
composed of three steps: preprocessing, difference image (DI) generation and DI analysis. Most researches focus on the 
DI generation and DI analysis step. In general, the log-ratio operator is the most widely used method for DI generation, 
since it is robust to speckle noise. In addition, other methods are also proposed to solve the problem of DI generation. In 
[5], Gao et al. proposed a modified log-ratio operator to generate DI, which is good at detecting changed small targets in 
multitemporal SAR images. Yavariabdi et al. [6] proposed a novel method to generate DI by using the structural similari-
ty index measure method, which provides combination of the comparisons of luminance, contrast, and structure between 
two images.Gao et al. [7] proposed a technique based on PCANet for DI analysis. After some reliable samples are select-
ed, PCANet is utilized for changed and unchanged pixels classification. Li et al. [8] proposed a novel change detection 
method based on Gabor wavelets and hierarchical classifiers. Gong et al. [9] proposed a method by adding the Markov 
random field (MRF) into the procedure of fuzzy c-means (FCM) clustering, and the method can obtain satisfying results 
in speckle noise reduction. 

Most existing change detection methods use log-ratio operator to generate a DI. We observed that in the DI, the 
changed regions are usually salient and distinctive. Therefore, if the DI is enhanced by saliency detection method, the 
change detection performance can be improved. In this paper, we proposed a novel technique based on saliency detection 
for SAR image change detection. The log-ratio operator is first utilized to generate a DI. Then, pattern and intensity dis-
tinctive analysis [10] is employed to obtain the saliency map of the DI. After that, the original DI and the saliency map 
are fused to obtain an enhance DI. Finally, principal component analysis and k-means clustering (PCAKM) [11] are used 
to classify pixels in the enhanced DI into changed and unchanged class. 
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Figure 2  The framework of the proposed method. In the first step, the log-ratio operator is first used to generate a DI, and then 
the pattern and intensity distinctiveness analysis is utilized to enhance the DI. In the second step, PCAKM [11] is used to classify 
pixels in the enhanced DI into changed and unchanged clusters. 

3.1 Enhanced DI generation based on pattern and intensity distinctive analysis 
Given two co-registered multi-temporal SAR images, 1I and 2I , the log-ratio operator is first used to generate a DI. 

The log-ratio operator is widely used to handling multitemporal SAR images, since it is considered to be better suited for 
the intrinsic speckle noise. Let DI represents the DI, and the formulation of DI can be defined by 

1 2| log( ) log( ) |= -DI I I . (1)

After obtaining the log-ratio image, pattern and intensity distinctiveness analysis [10] is utilized to exploit the most 
salient regions in the DI. It is originally proposed by Margolin [10] to detect salient objects from natural images. The 
algorithm is comprised of two parts: pattern distinctiveness and intensity distinctiveness. For pattern distinctiveness, all 
9×9 patches are extracted and the average patch Ap  is computed. An image patch xp is considered distinct if the patch 
connecting it to the average patch Ap , along the principle components, is long. Specifically, pattern distinctiveness 
( )P xD p  is defined as: 

1
( )P x xD p p=  , (2)

where xp is the coordinates of xp  in the PCA coordinate system. 

On the other hand, to compute intensity distinctiveness, the input image is segment into regions by using the SLIC 
superpixels [12]. Then, the intensity distinctiveness of a region xr is computed by: 

2
1

( )
M

I x x i
i

D r r r
=

= -å , (3)

where M  is the total number of regions. As mentioned above, the saliency algorithm seeks regions that are salient in 
both pattern and intensity. Therefore, to integrate the pattern and intensity distinctiveness, the saliency map SALI  is 
computed by 

SAL P II D D= ⋅ . (4)

After obtaining the saliency map SALI , the enhanced difference image DEI  is computed by: 

DE exp( )SAL DI k I I= ⋅ ⋅ . (5)
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