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ABSTRACT 

Hyperspectral image classification has been well acknowledged as one of the challenging tasks of hyperspectral data 

processing. In this paper, we propose a novel hyperspectral image classification framework based on local binary pattern 

(LBP) features and PCANet. In the proposed method, linear prediction error (LPE) is first employed to select a subset of 

informative bands, and LBP is utilized to extract texture features. Then, spectral and texture features are stacked into a 

high dimensional vectors. Next, the extracted features of a specified position are transformed to a 2-D image. The ob-

tained images of all pixels are fed into PCANet for classification. Experimental results on real hyperspectral dataset 

demonstrate the effectiveness of the proposed method. 

Keywords: local binary patterns, hyperspectral image, pattern classification, principal component analysis, convolution-

al network.  

1. INTRODUCTION  

With the development of remote sensing technology, hyperspectral images with high spatial resolution are easy to 

obtain in our daily life. Over the past two decades, hyperspectral images have been widely applied in the field of urban 

land cover monitoring [1], vegetation classification [2], environmental monitoring [3], agricultural exploration [4], etc. 

Hyperspectral sensor provides hundreds of narrow spectral channels from the same area on the surface of the earth. The 

detailed spectral information increases the capability of distinguishing between different land-cover classes with promot-

ing accuracy. In this paper, we mainly focus on the problem of land-cover classification by using hyperspectral images. 

In the early studies of hyperspectral image classification, researchers only used the spectral information [5-7]. 

Camps-Valls et al. [5] proposed a kernel-based method for hyperspectral image classification. In the method, regularized 

radial basis function neural networks are introduced to improve the classification performance. Demir and Erturk [8] 

proposed a hyperspectral image classification method based on relevance vector machines. The method is of high com-

putational efficiency and more suitable for real-time classification applications. Later, some researchers recognized that 

the combination of spectral and spatial information could provide better performance. Therefore, many classification 

methods based on spectral-spectral features are proposed. In [9], a method based on extended morphological profile was 

proposed for fusion of the spatial and spectral information. Li et al. [10] used Gabor feature for hyperspectral image spa-

tial information analysis. 

Recently, deep learning methods have displayed promising performance for hyperspectral image classification. In 

[11], deep belief network was applied in hyperspectral image classification. Chen et al. [12] employed a stacked autoen-

coder to extract features of hyperspectral image. In [13], convolutional autoencoder was utilized to learn representative 

features from hyperspectral image. However, as mentioned in [14], deep learning-based methods might perform poor 

when the number of training samples is small. Chan et al. [15] proposed a simplified deep learning method called 

PCANet. It is only comprised of two convolutional layers and one feature generation layer. Although the architecture of 

PCANet is rather simple, it can achieve competitive results against many state-of-the-art deep learning models in many 

classification tasks. 

In this paper, we propose a novel hyperspectral image classification framework based on LBP features and PCANet. 

In the proposed method, linear prediction error (LPE) [16] is first employed to select a subset of informative spectral 

bands, and LBP is utilized to extract texture features. Then, spectral and texture features are stacked into a high dimen-

sional vectors. Next, the extracted features of a specified position are transformed to a 2-D image. The obtained images 



of all pixels are fed into PCANet for classification. Experimental results on real hyperspectral dataset demonstrate the 

effectiveness of the proposed method. 

The remainder of this paper is organized as follows. In Section 2, we present the classification framework of the pro-

posed method. Section 3 shows the experimental results and discussions. Finally, Section 4 draws conclusion of the pro-

posed method. Some hints for plausible future research are also provided. 

2. METHODOLOGY 

 

Figure 1  The framework of the proposed method. 

In this section, the detailed implementation of the proposed method is described. The overall framework of the pro-

posed method is illustrated in Fig. 1. To be specific, the proposed hyperspectral classification method is comprised of 

two main steps: 

Step 1 ─ Extraction of the spectral and texture features. In the spectral feature extraction, we use all the spectral 

channels as input. In the texture feature extraction, LPE [16] is utilized to select a subset of informative spectral bands, 

and LBP [17] is employed to extract texture features. Then, spectral and texture features are stacked into high dimen-

sional vectors. 

Step 2 ─ Integrating the texture and spectral features into PCANet for classification. The extracted spectral and 

texture features for each pixel are transformed from a 1-D vector to a 2-D image. Then, the obtained images are fed into 

PCANet for classification. 

2.1 Extraction of the texture and spectral features 

Feature extraction in the proposed method is consisted of two parallel modules: spectral feature extraction and tex-

ture feature extraction. In the spectral feature extraction, all the spectral channels are used as input, as shown in Fig. 1. 

 

Figure 2  Implementation of LBP feature extraction. 

In texture feature extraction, if all the spectral channels are used in the texture feature extraction, the complexity of 

texture feature extraction will increase the computational burden. Therefore, we select informative bands to reduce the 

computational complexity before extracting texture feature. In this paper, LPE [16] is utilized to select the most distinc-



tive and informative bands. LPE is a simple but effective band selection method, and based on band similarity measure-

ment. Specifically, the basic steps of LPE can be summarized as follows: First, choose a pair of bands 1
B  and 2

B , and 

the resulting selected band subset is F 1 2
{ , }B B= . Second, find a third band 3

B  that is the most similar to all the bands 

in the current F .  

Then, the selected band subset will be updated as F 3
{ }B= F ? . Finally, continue the second step until we obtain 

enough bands. In LPE, the employed similarity criteria is linear prediction. In our implementations, we select 7 bands for 

texture feature extraction. 

After band selection, LBP operator which describes the edges, lines, and flat areas of the texture information, is uti-

lized to each selected band. Given a center pixel c
t , each neighbor pixels of a local region is assigned with a binary label, 

which is either “1” or “0”. To be specific, the k  neighboring pixels are generated from a circle of radius r  centered at 

c
t . The LBP code for the center pixel c

t  can defined as: 
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local region. After obtaining the LBP codes of all the pixels, a histogram will be computed over a local patch centered at 

the interested pixel, as illustrated in Fig. 2. All bands of LBP histograms are concatenated to form the texture feature 

vector.  

2.2 Integrating the texture and spectral features into PCANet for classification 

The spectral features contain crucial information for discriminating different kinds of ground categories. The texture 

features decrease the intra-class variance, and then can improve the classification performance. The integration of spec-

tral and texture features provides significant performance improvements, it is addressed by vector stacking, as shown in 

Fig. 1. Next, the stacked features are “imaging” to an image. Here imaging refers to transform from a 1-D vector to a 2-D 

image. Supposing that iv  is the stacked feature vector of a pixel, and then the imaging process is denoted by: 

´ÎV ¡ k k
i iv ® , (2) 

In this paper, the width and height of the imaging results are set the same for simplifying. Next, the imaging results are 

fed into PCANet for classification. 

 
Figure 3  Flowchart of PCANet. 

PCANet is a simplified deep learning framework, which is comprised of PCA and binary hashing. Its process is di-

vided into three layers: the first and second are PCA convolutional layers, the third is hashing and classification layer, as 

shown in Fig. 3. 



In the first layer, supposing that Vi  is an input sample image. PCANet first takes a 1 2´k k  patch around each pixel, 

and collects all the vectorized patches to form a matrix 1 2´ÎX ¡ k k n
i

. Here n  is the number of patches extracted from 

Vi . Next, we construct a matrix for each input image and combine them together: 

1 2
1 2[ , , , ] ´= ?X X X XK ? k k Nn

N , (2) 

where N  is the number of input images. PCA is utilized to minimize the reconstruction error within a family of or-

thonormal filters. The filters are expressed as: 

1 2

1 2

1 mat ( ( )) ´ÎW XXB ? k kT
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where 
1 2

mat ( )×k k  is a function that reshapes a vector to a matrix, and ( )XXT
lq  represents the principle vector of XXT . 

1L  corresponds to the number of filters in the first layer. Therefore, the output of the first layer can be obtained by 

1*V V WBl
i i l

, 1, 2, ,= Ki N . (2) 

Then we conduct the same process as that of the first layer for all the Vl
i

, the output of the second layer is obtained. 

Assuming that the number of filters in the second layer is 2L , we would obtain 1 2L L  images. 

In the final layer of PCANet, a binary quantization process is conducted. Specifically, each of the 1L  images is sepa-

rated into many local blocks. The histogram of each block is computed, and all the histograms are concatenated into one 

vector. Moreover, SVM classifier is utilized to determine the classification results. 

3. EXPERIMENTAL RESULTS AND ANALYSIS 

3.1 Dataset description and parameter tuning 

In this paper, we test the proposed method and several closely related methods on the Indian Pines dataset. The da-

taset is acquired in June 1992 by National Aeronautics and Space Administration’s Airborne Visible/Infrared Imaging 

Spectrometer (AVIRIS) sensor at the northwest Indiana’s Indian Pine test site. The image scene, with a vegetation-

classification scenario of 145 × 145 pixels and 200 spectral bands, contains two-thirds agriculture, and one-third forest or 

other natural perennial vegetation. In our paper, the ground-truth is designated into 16 classes and the number of total 

labeled pixels is 10249. The number of training and testing samples is listed in Table 1, respectively. 

Table 1  Class label and train-test distribution of samples in the Indian Pines dataset. 

# class Training Testing 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

Alfalfa 

Corn-notill 

Corn-mintill 

Corn 

Grass-pasture 

Grass-trees 

Grass-pasture-mowed 

Hay-windrowed 

Oats 

Soybean-notill 

Soybean-mintill 

Soybean-clean 

Wheat 

Woods 

Build-Grass-Trees-Drives 

Stone-Steel-Towers 

6 

30 

30 

24 

30 

30 

3 

30 

2 

30 

30 

30 

22 

30 

30 

10 

40 

1398 

800 

213 

453 

700 

25 

448 

18 

942 

2425 

563 

183 

1235 

356 

83 

 Total 367 9882 

In the proposed classification framework, many parameters, such as the quantity of selected bands, ( , )m r  of the 

LBP operator and the number and size of filters, the block size of PCANet, are of great significance to the performance 

of hyperspectral classification. Firstly, LPE is applied to reduce the number of channels before extracting LBP feature. In 

[18], the number of selecting bands and patch size were fixed to be 7 and 17×17 and it would achieve the best perfor-



mance. Setting parameters in our experiment is same as that. Furthermore, the parameters filter size, filter number and 

patch size of PCANet are fixed to be (5, 5), (3, 5) and (9, 9). The impacts from different ( , )m r  are investigated as 

shown in Table 2. 

Table 2  Classification accuracy by varing ( , )m r of LBP.  

Value of r Value of m 
Classification 

accuracy 

1 4 91.67 

1 8 93.56 

1 16 93.71 

2 4 89.70 

2 8 92.90 

2 16 93.26 

3.2 Experimental results 

In this subsection, in order to demonstrate the effectiveness of the proposed method, we choose six closely related 

methods for comparison. These methods include SVM [18], ELM [19], PCANet [15], LBP_SVM, LBP_ELM [20]. For 

SVM, it is a very popular classifier and widely used in hyperspectral image classification. ELM classifier is considered 

to be more computational efficient than SVM, and has been recently applied to hyperspectral image classification. 

LBP_SVM and LBP_ELM are proposed by Li [20]. It is demonstrated that, LBP feature provides good performance. 

The overall accuracy (OA) and average accuracy (AA) are used to evaluate the classification performance of different 

methods. 

Table 3  Overall classification accuracy (%) and average accuracy (%) by different methods on the Indian Pines dataset. 

Class SVM ELM PCANet LBP_SVM LBP_ELM 
Proposed 

method 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

80.00 

58.37 

57.88 

62.20 

86.34 

95.29 

68.00 

93.53 

33.33 

59.45 

53.20 

57.73 

98.36 

90.04 

55.62 

93.98 

12.50 

53.36 

59.88 

67.61 

85.24 

97.43 

72.00 

98.66 

11.11 

51.91 

47.71 

71.94 

98.91 

89.64 

64.61 

87.95 

65.00 

58.58 

65.50 

74.18 

85.90 

89.86 

72.00 

96.88 

50.00 

68.68 

55.13 

71.76 

99.45 

89.47 

64.33 

93.98 

100 

83.33 

97.00 

98.59 

98.68 

96.43 

100 

100 

100 

84.18 

84.29 

83.48 

100 

98.79 

97.47 

97.59 

100 

84.26 

97.13 

98.59 

98.90 

98.00 

100 

100 

100 

84.39 

83.75 

84.72 

100 

99.03 

98.31 

97.59 

100 

91.42 

98.50 

98.12 

97.36 

99.57 

96.00 

100 

100 

87.69 

88.91 

91.12 

100 

100 

99.16 

97.59 

OA 67.03 66.24 70.71 90.49 90.77 94.01 

AA 71.71 66.90 75.04 94.99 95.29 96.59 

In the experiment, we randomly choose the training and testing samples. The performance of each algorithm is com-

pared by OA and AA. The classification accuracy for each class is shown in Table 3. We observe that the classification 

accuracy of the proposed method for each class is nearly better than the other methods, except for the Corn, Grass-

pasture and Grass-pasture-mowed. Especially, the classification results of the proposed method for Hay-windrowed, Oats, 

Wheat and Woods run up to 100%. The proposed method obtains the best OA and AA values. The quantitative results 

clearly demonstrate that the LBP is a highly discriminative texture feature for hyperspectral image analysis. In addition, 

the simple framework of PCANet has some advantage in hyperspectral image classification. 



   
(a) (b) (c) 

   
(d) (e) (f) 

  
(g) (h) 

Alfalfa Corn-notill Corn-mintill Corn Grass-pasture Grass-trees 

Grass-pasture-mowed Hay-windrowed Oats Soybean-notill Soybean-mintill 

Soybean-clean Wheat Woods Build-Grass-Trees-Drives Stone-Steel-Towers 

Figure 4  The classificaiton results using 367 tranining samples for the Indian Pines datase with 16 classes. (a) Ground truth; (b) 

training set; (c) result by SVM; (d) result by ELM; (e) result by PCANet; (f) result by LBP_SVM; (g) result by LBP_ELM; (h) 

result by the proposed method. 

The maps on labeled pixels obtained from the different methods are shown in Fig. 4. These classification results are 

consistent with the results shown in Tables 3. The ground truth map and training sets are shown in Fig. 4 (a) and (b), 

respectively. Results obtained by integrating texture and spectral features are less noisy than the results obtained by only 

spectral features. For example, the classification results of LBP_SVM and LBP_ELM are more accurate than the results 

of SVM and ELM. In addition, Fig. 4 (e) shows that the result of PCANet is smoother than that of SVM and ELM. In Fig. 

4 (h), the combination of LBP feature and deep feature obtains a much smoother classification result than other methods 

that only use texture or spectral information. 



4. CONCLUSION 

In this paper, we propose a novel framework for hyperspectral image classification based on LBP and PCANet. 

Above all, informative spectral bands are selected by using LPE. In our experiment, LBP and PCANet are applied to 

extract spatial features and deep features, respectively. LBP operator is calculated on the local grid of the image, and 

maintains a good invariance to the shape and the illumination of the image. PCANet is a simple deep learning network, 

and consists of cascaded PCA, binary hashing, and block histograms. To improve the classification performance, we 

combine hand-crafted feature and deep information. Deep features (PCANet) provides as a reasonable solution to make 

up for the defect of hand-crafted features. The experimental results have demonstrated on the Indian Pines dataset that 

the proposed method yields good performance, and it gives rise to a better classification result than several closely relat-

ed methods. 
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