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ABSTRACT

Hyperspectral imagery has evident advantages for sea ice
classification due to enormous spectral bands. In this paper,
we proposed a novel sea ice classification framework from hy-
perspectral image based on self-paced boost learning (SPBL).
First, the criterion of linear prediction error is used for unsu-
pervised band selection. Then, local binary pattern (LBP) fea-
tures are extracted from the selected bands. Finally, SPBL is
employed as the classifier to provide probability outputs using
the extracted features. The proposed framework can capture
the intrinsic inter-class discriminative models while ensuring
the reliability of the samples involved in learning. The exper-
imental results in real-world dataset demonstrate that the pro-
posed framework is superior to several closely related meth-
ods.

Index Terms— Sea ice, hyperspectral image, local binary
patterns, self-paced boost learning.

1. INTRODUCTION

Sea ice covers about 25 million square kilometers of the earth.
It is a critical component especially in remote polar ocean
as it influences climate, wildlife and people who live in the
Arctic. Specifically, if gradually warming temperatures melt
sea ice over time, surfaces of fewer bright are available to re-
flect sunlight back into space, and temperatures rise further.
This chains of events start a cycle of warming and melting
ice, which makes the polar regions the most sensitive areas
to climate change on the Earth. In addition, the observation
of sea ice is important for safe navigation. In the Arctic, sea
ice can be an obstacle to normal shipping routes through the
Northern Sea route and Northwest Passage. Therefore, the
observations of sea ice have been paid more and more atten-
tion recently.

Remote sensing technology can capture large areas of im-
ages of sea ice rapidly, and developing robust sea ice classi-
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fication techniques have been a long-standing goal for opera-
tional ice charting services. Hyperspectral images can obtain
enormous continues spectrum information, and they are an
important resource for sea ice classification. However, hyper-
spectral image poses big challenges, such as the well-known
Hughes phenomenon [1]. Hughes phenomenon means that
an increase in dimensions of limited training samples will
cause a decrease in classification performance. To solve the
problem, feature extraction is considered as one of the most
challenging tasks in hyperspectral image applications. Many
techniques have been proposed for hyperspectral image clas-
sification. Li and Qian [2] presented a hyperspectral classifi-
cation method based on Gabor features. When combined with
nearest regularized subspace, the Gabor features have strong
power in spatial information representation. Mirzapour and
Ghassemian [3] proposed a feature extraction scheme which
combines morphological profiles, global Gabor features, and
grey-level co-occurrence matrices. The combined feature set
obtains satisfactory results in hyperspectral image classifica-
tion. Li et al. [4] proposed a framework based on local binary
patterns (LBP) [8] to extract local image features for hyper-
spectral image classification. LBP is a simple yet effective op-
erator to describe local spatial information. If combined with
more advanced classifiers, the performance of hyperspectral
image classification may be further improved.

Recently, self-paced learning [5] has been attracting in-
creasing attention in the filed of machine learning and com-
puter vision. It is inspired by the learning principle underlying
the cognitive process of humans. Specifically, humans gener-
ally start with learning easier aspects of target task, and then
gradually take more complex example into consideration. Pi
et al. [6] noticed that boosting and self-paced learning are
consistent in basic principles and complementary in method-
ology. Therefore, they proposed self-paced boosting learning
(SPBL), which learns a joint manner from weak models to
strong model and from easy samples to complex ones. The
verified empirically one is that SPBL is effective in computer
vision applications. However, in remote sensing applications,
SPBL has rarely been considered.

In this paper, we presented a novel sea ice classification
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framework from hyperspectral image based on self-paced
boost learning. First, a similar feature extraction scheme as
mentioned in Li’s work [4] is employed. The criterion of
linear prediction error (LPE) [7] is used for unsupervised
band selection. Then, LBP features are extracted from these
bands. Finally, SPBL is employed as the classifier to provide
probability outputs using the extracted features.

2. METHODOLOGY

The framework of the proposed method is illustrated in Fig.
1. It consists of two main steps: 1) LBP feature extraction;
2) feature classification based on SPBL. In the remainder of
this section, we will describe more details about the feature
extraction and classification.

Sea ice 
hyperspectral 

image
Band Selection Texture feature 

extraction by LBP

Classification by 
SPBL
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results
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Fig. 1. Framework of the proposed hyperspectral classifica-
tion method

2.1. Feature Extraction

In the feature extraction, similar to Li’s work [4], LPE is
first used to select a subset of spectral bands with distinc-
tive and informative features. Considering two spectral bands
B1 and B2, the third band B can be denoted by B′ = a0 +
a1B1 + a2B2, where a0, a1, a2 are the parameters that can
minimize the linear prediction error. Let the parameter vector
a = [a1, a2, a3]

T , and a least square solution can be employed
to obtain the parameter vector as follows:

a = (MTM)−1MTmB , (1)

where M is an N × 3 matrix whose first column is with all
1s, second column is the B1-band, and third column is the
B2-band. mB is the B-band. The band that produces the
maximum error is considered as the most dissimilar band to
B1 and B2. Then, the band will be selected. Similarly, using
these three bands, a fourth band can be found, and so on.

After band selection, LBP operator is used to extract con-
textual features from the selected bands. LBP is a gray-scale
and rotation-invariant texture operator [8]. Given a center
pixel pc, each neighbor of a local region is assigned with
a binary label, which can be either 1 or 0, depending on
whether the scalar value has a larger of intensity value or
not. The neighboring pixels are from a set of equally spaced
samples over a circle of radius r centered at the scalar value.
r determines how far the neighboring pixels can be located
away from the center pixel. Along with selected x neighbors
{pi}x−1i=0 , the LBP code for the scalar value pc is given by

LBPx,r(pc) =
x−1∑
i=0

U(pi − pc)2i, (2)

where U (pn − pc) = 0, if pn ≤ pc and U(pn − pc) = 1 if
pn > pc. After obtaining the LBP codes, an occurrence his-
togram is computed over a local patch. A binning procedure
is required to guarantee that the histogram features have the
same dimension.

2.2. Classification by Self-Paced Boosting Learning

The extracted LBP features are classified by SPBL. Let
{(xi, yi)}ni=1 be the training samples, where xi ∈ Rd is
the feature of sample i, yi is the class label of xi. The robust-
ness of a learning method relies on the loss function to relieve
the influence of noisy and confusing data. Instead of directly
learning from all the samples, SPBL aims to guide the boost-
ing model to learn asymptotically from the easy samples to
complex ones. Therefore, the general objective of SPBL can
be formulated as:

min
W,s

n∑
i=1

si

C∑
r=1

L(ρir) +

n∑
i=1

g(si;λ) + νR(W ),

s.t. ∀i, r, ρir = Ki:wyi −Ki:wr;W ≥ 0; s ∈ [0, 1]
n
,

(3)

where K ∈ Rn×z is the weak classifiers’ responses for the
training data with [Kij ] = [kj(xi)], and Ki: is the ith row
of K; si ∈ [0, 1] is the self-paced learning weight of sample
xi that denotes its learning “easiness”. g(·;λ) → R is the
self-paced learning function that specifies how samples are
selected. A weight si is assigned to each sample as a measure
of its “easiness”. The function g(si;λ) can dynamically select
the easily learned samples that are more discriminative. With
joint optimization of parameter s and parameterW , the SPBL
model gradually incorporates the training samples from easy
ones to complex ones.

An alternating optimization is employed to solve Eq. (3),
which optimizes each of the two variables with the other one
fixed in an alternating manner. s is optimized as follows:

s∗i = argmin
si

sili + g(si;λ), s.t. si ∈ [0, 1] , (4)

7325



where li =
∑
r ln(1 + e−ρir ) denotes the loss of sample xi.

In addition, W is optimized as follows:

W ∗ = argmin
W

∑
i,r

si ln(1 + e−ρir ) + ν‖W‖2,1

s.t. ∀i, r, ρir = Hi:wyi −Hi:wr;W ≥ 0.

(5)

To solve W in the above equation, the column generation
method is employed, and the set of active weak classifiers is
augmented. Then the optimization continues with a new set
of active weak classifiers, until the objective value of boosting
reaches a tolerance threshold. Detailed information about the
SPBL algorithm can be found in Pi’s work [6].

3. EXPERIMENTAL RESULTS AND ANALYSIS

3.1. Experimental Setup

The dataset employed in this paper was acquired on April
12th in 2014, from Hyperion sensor of EO-1. The image cov-
ers an area of Baffin Bay in Greenland, and is comprised of
242 spectral bands. The size of the image is 350×300 pix-
els. There are mainly four classes from the ground truth map:
land, sea water, gray ice and white ice. For illustrative pur-
poses, Fig. 2(a) shows a false color composition of the scene,
while Fig. 2(b) shows the ground truth map of the scene. Here
we randomly select 10% of all labeled pixels in each class for
training, and the others are used for testing. More detailed
information of the number of training and testing samples is
summarized in Table 1.

(a) (b)
Land

Sea water
White ice

Gray ice

Fig. 2. Baffin Bay dataset. (a) False color composition. (b)
Ground truth map.

3.2. Results and Analysis

The performance of the proposed classification methods is
shown in Tables 2. We compare the proposed method with

Table 1. Class labels and train-test distribution of samples

# Class Train Test

1 Land 1140 10255

2 Sea water 5269 47421

3 Gray ice 1368 12310

4 White ice 750 6754

Total 8527 76740

Table 2. Classification accuracies of different methods

Class LBP-ELM IFRF Proposed

Land 87.35 98.92 95.18

Sea water 87.60 99.18 97.84

Gray ice 63.60 77.49 95.90

White ice 65.93 81.38 95.85

OA(%) 82.21 93.28 97.01

κ× 100 67.97 88.54 94.70

two closely related hyperspectral classification methods:
LBP-ELM [10] and IFRF [9]. We use the default param-
eters of the compared methods which were provided in the
corresponding references.

Fig. 3 presents the classification results by different meth-
ods. From visual comparison, it can be observed that there are
many noisy pixels in the result generated by LBP-ELM, from
the Table. 2, and it can be observed that the proposed method
surpasses LBP-ELM by 14.8% in OA. In addition, in the re-
sult generated by IFRF, a lot of small white ice is classified
incorrectly into gray ice. Therefore, the classification accu-
racy of IFRF is much lower than the proposed method, and
the proposed method surpasses IFRF by 6.2% in OA. The
experimental results indicate that the proposed method can
achieve good accuracy in sea ice classification by capturing
the intrinsic inter-class discriminative patterns while ensuring
the reliability of the samples involved in learning.

4. CONCLUSION

In this paper, we proposed a novel sea ice classification
framework from hyperspectral image based on self-paced
boost learning. First, LPE is employed for unsupervised band
selection. Then, LBP features are extracted from the selected
bands. Finally, SPBL is employed as the classifier to provide
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(a) (b)

(c)

Fig. 3. Classification results by different methods on the
Baffin Bay dataset. (a) LBP-ELM. (b) IFRF. (c) Proposed
method.

probability outputs using the extracted features. The proposed
framework can capture the intrinsic inter-class discriminative
models while ensuring the reliability of the samples involved
in learning. The experimental results in real-world dataset
show the effectiveness of the proposed method.

In the future, we will focus on learning the more sophis-
ticated feature selection approaches and the corresponding
class wise contributions, simultaneously.
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