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Abstract. With the development of earth observation programs, many multitemporal synthetic
aperture radar (SAR) images over the same geographical area are available. It is demanding to
develop automatic change detection techniques to take advantage of these images. Most existing
techniques directly analyze the difference image (DI), and therefore, they are easily affected by
the speckle noise. We proposed an SAR image change detection method based on frequency-
domain analysis and random multigraphs. The proposed method follows a coarse-to-fine pro-
cedure: in the coarse changed regions localization stage, frequency-domain analysis is utilized to
select distinctive and salient regions from the DI. Therefore, nonsalient regions are neglected,
and noisy unchanged regions incurred by the speckle noise are suppressed. In the fine changed
regions classification stage, random multigraphs are employed as the classification model. By
selecting a subset of neighborhood features to create graphs, the proposed method can efficiently
exploit the nonlinear relations between multitemporal SAR images. The experimental results on
two real SAR datasets and one simulated dataset have demonstrated the effectiveness of the
proposed method. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10
.1117/1.JRS.12.016010]
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1 Introduction

With the advance of earth observation programs, many synthetic aperture radar (SAR) sensors
have been developed for modern spaceborne systems. More and more multitemporal SAR
images over the same geographical area are available. Therefore, change detection using
SAR images has drawn increasing attention in remote sensing communities. SAR image change
detection is of high practical value to a large number of applications, such as disaster monitor-
ing,1 flood detection,2 concealed target detection,3 urban planning,4 land cover data updating,5

and so on.
SAR sensors create images by illuminating a scene with successive pulses of radio waves and

processing the received echoes.6 They are independent of atmospheric and sunlight conditions.7

Therefore, SAR images are the ideal and indispensable source to detection land cover changes.
Especially, when heavy rain causes severe flooding, SAR images can make up for the shortage of
effective optical, infrared, and LiDAR remote sensing images.8 However, the SAR images are
inherently contaminated by multiplicative speckle noises,9 and this phenomenon makes the SAR
image change detection a very challenging task. Therefore, it is important to develop robust
change detection techniques, which can cope with the speckle noise.10

To cope with the speckle noise, many methods have been proposed for SAR image change
detection. These methods can be categorized into two main streams: the supervised method11,12

and the unsupervised method.13–15 The supervised method requires knowledge about the land
cover types or labeled samples collected by experts. Liu et al.11 proposed a supervised method
to detection changes of bare lands, lawns, and water using some labeled samples. In theory,
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supervised method may have better performance in obtaining better description of the changes.
However, a lack of qualified labeled samples in real applications makes the unsupervised method
more popular than the supervised method.16 In this paper, we mainly focus on the unsupervised
SAR image change detection methods.

Generally, the unsupervised SAR image change detection can be divided into three steps:
(1) image preprocessing; (2) generation of the difference image (DI); and (3) analysis of the DI.
The first step usually includes geometric correction and registration. In practice, the residual
registration noises will affect the performance of change detection.15 In this paper, we assume
that the input multitemporal images have been coregistrated, and then we mainly focus on the
process of DI generation and analysis. In the DI generation step, the log-ratio operator is one of
the most widely used methods since it is considered to have the capability to transform multi-
plicative speckle noise into an additive one. Hence, the DI generated by log-ratio operator is
robust to calibration and radiometric errors. In the DI analysis step, the pixels are classified
into changed and unchanged classes using thresholding,17 fuzzy c-means (FCM) clustering,18

Markov fusion,19 etc. Celik20 used principal component analysis (PCA) to construct an eigen-
vector space on the DI. Then, k-means clustering is adopted to cluster the features into changed
and unchanged. Gong et al.21 took spatial information into account and proposed an improved
FCM clustering for SAR image change detection. In recent years, Markov random fields22 and
multistage extreme learning machine23 were also applied to solve the change detection problem.
Yousif and Ban22 utilized Markov random field to model the local interactions between pixels’
labels. The model has the potential to preserve spatial details and to reduce speckle effects. Jia
et al.23 used a multistage extreme learning machine to model the spatial-neighborhood informa-
tion between multitemporal SAR images. Most existing methods focus on building a robust
classification model for DI analysis. However, there are many noisy regions in the DI that
are generated by the speckle noise. Therefore, the performance of existing methods is usually
affected by these noisy regions. Removing these noisy regions before DI analysis may improve
the performance of change detection.

Two important problems need to be considered in SAR image change detection. First, the
noisy regions in the DI must be neglected or suppressed. Second, a good classification model is
needed for changed region classification.

For the first problem, changed regions in the DI usually have higher gray values than
unchanged regions, which make the changed regions much more distinctive and salient.
This phenomenon inspires us to use saliency detection methods to suppress the noisy regions
in the DI. In this paper, frequency-domain analysis24 is employed to generate a salient map of the
DI. In the salient map, many noise unchanged regions are suppressed. With respect to the second
problem, graph-based methods have recently received significant attention due to their
efficiency.25,26 These methods utilize a graph structure to constrain the classification function
to be smooth. In our previous work, we proposed a random multigraphs method,27 which is
a graph-based method to solve the problem of data classification. Inspired by the random forest
algorithm,28 randomly selecting a subset of features to create a graph can avoid the problem of
overfitting. Hence, the performance of classification can be improved. In this paper, we introduce
the idea of random multigraphs into SAR images to exploit the nonlinear relationship between
multitemporal SAR images, and the speckle noise can be suppressed to some extent.

In this paper, we proposed a change detection method for SAR image change detection based
on frequency-domain analysis and random multigraphs. First, by observing that the phenomenon
that truly changed regions in the DI is salient and distinctive, we utilized frequency-domain
analysis24 to obtain salient changed regions. Then, FCM is used to select reliable samples
from these regions. Neighborhood features of the pixels in the salient changed regions are
fed into the random multigraphs for classification. Through classification, pixels in the DI
are classified into changed class and unchanged class, and, thus, the final change map can
be obtained.

The main contributions of the proposed method are threefold: first, we use frequency-domain
analysis to find the salient changed regions from the SAR images, which is different from the
existing methods. Second, we introduce a random multigraphs algorithm for SAR image change
detection for the first time. Random multigraphs combine the ideas of random forest and anchor
graph, which will contribute to classification performance improvements. Third, we proposed
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a new coarse-to-fine framework for multitemporal SAR image change detection. The framework
is composed of coarse changed regions localization and fine changed regions classification.
Experimental results on three real SAR datasets demonstrate the effectiveness of the proposed
method.

The remainder of this paper is organized as follows. Section 2 gives the problem statements
and some background knowledge. Section 3 presents the detailed description of the proposed
change detection method. Section 4 presents the experimental results of the proposed method
and closely related methods on three real SAR datasets. Finally, Sec. 5 gives the concluding
remarks of the proposed method.

2 Background

In this section, the problem of SAR image change detection is briefly described, and the
motivation of the proposed method is presented. Then, frequency-domain analysis and random
multigraphs are described in detail.

2.1 Problem Statements and Motivation

Consider two coregistered multitemporal SAR images I1 and I2, and both images are contami-
nated with multiplicative speckle noise. The purpose of change detection is to generate a change
map, which represents the changes that occur between I1 and I2. From another point of view, the
problem of SAR image change detection can be viewed as a binary classification process. After
classification, we obtain a binary image in which unchanged pixels are labeled with 0 and
changed pixels are labeled with 1.

As mentioned before, in this paper, the process of change detection includes two stages:
coarse changed regions localization and fine changed regions classification. In the first
stage, we use frequency-domain saliency detection24 to suppress noisy unchanged regions in
the DI. In the second stage, a random multigraphs algorithm provides a good solution of changed
and unchanged pixels classification. Next, the frequency-domain analysis is introduced in
Sec. 2.2, and the random multigraphs algorithm is described in Sec. 2.3.

2.2 Introduction to Frequency-Domain Saliency Detection

Saliency detection means finding the regions that exhibit a strong local or global contrast. As
shown in Fig. 1(a), the changed regions are bright regions that are quite distinctive. These regions
attract greater attention by the human visual system than other parts of the image. Figure 1(b)
shows the saliency map generated by frequency-domain analysis, and Fig. 1(c) shows the
ground-truth change map. It can be observed that the shape and position of the salient regions
are similar to the changed regions. Therefore, frequency-domain saliency detection is suited for
coarse changed regions localization.

Fig. 1 The similarity between the saliency map and the ground-truth change map. (a) DI obtained
by the log-ratio operator. (b) Saliency map generated by the frequency-domain analysis.
(c) Ground-truth change map produced via manual marking by the combination of prior knowledge
and photo interpretation.
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Frequency-domain saliency detection uses a low-pass Gaussian kernel with an appropriate
scale for amplitude spectrum convolution and then obtains the saliency map. Specifically, given
an image fðx; yÞ, it was first transformed into the frequency domain by Fourier transform:
fðx; yÞ → F ðfÞðu; vÞ. The amplitude spectrum Aðu; vÞ ¼ jFðfÞj and the phase spectrum
Pðu; vÞ ¼ angle ½FðfÞ� are computed. A Gaussian kernel h is employed to suppress spikes
in the amplitude spectrum jF ðfÞj of an image as follows:

EQ-TARGET;temp:intralink-;e001;116;663ASðu; vÞ ¼ jF ðfÞj � h: (1)

The resulting smoothed amplitude spectrum AS and the original phase spectrum are com-
bined to compute the inverse transform, which in turn, yields the saliency map:

EQ-TARGET;temp:intralink-;e002;116;608S ¼ F−1fASðu; vÞei·Pðu;vÞg: (2)

2.3 Introduction to Random Multigraphs

There are many methods proposed to solve the classification problems in remote sensing image
applications.29–31 However, graph-based classification methods are rarely used in SAR image
processing. In this paper, in the fine changed regions classification stage, we use random
multigraphs27 to classify the pixels in the changed region candidates into changed and
unchanged classes. It can exploit the nonlinear relationship between multitemporal SAR images
by randomly select a subset of features to create graphs.

The random multigraphs method uses an undirected graph to model the input data and
the relationship among the data. Given a dataset X ¼ Xl ∪ Xu ∈ Rd, d is the dimension of
the feature space. Xl ¼ fx1; x2; : : : ; xlg is a labeled set with the labels yi ∈ f0;1g.
Xu ∈ fxlþ1; : : : ; xlþug is an unlabeled set, and u is the number of unlabeled data.

Figure 2 illustrates the flowchart of the random multigraph algorithm. The whole framework
of random multigraph can be described as follows:

• Step 1: Randomly select kf features from all the d-dimensional features of each sample.
• Step 2: Selectm anchor points to cover the data manifold denoted by anchors matrix A and

then compute the mapping matrix P to represent the rest of the data points via the selected
anchors.

• Step 3: Run inference on this graph using graph Laplacian regularization.
• Step 4: Go to step 1, until we obtain kg graphs.
• Step 5: The obtained kg graphs are chosen to get the labels for the unlabeled data points.

In this paper, we use the anchor graph method32 to construct graphs. A ¼ fajgmj¼1 ∈ Rd in
which each aj is an anchor point. As such, the label prediction function f can be represented as
follows:

Fig. 2 Flowchart of the random multigraphs method.

Gao et al.: Synthetic aperture radar image change detection based. . .

Journal of Applied Remote Sensing 016010-4 Jan–Mar 2018 • Vol. 12(1)



EQ-TARGET;temp:intralink-;e003;116;735fðxiÞ ¼
Xm

j¼1

PijfðajÞ; (3)

where Pij is the data-adaptive weight. Define two vectors f ¼ ½fðx1Þ; : : : ; fðxnÞ�T and
fa ¼ ½fða1Þ; : : : ; fðamÞ�T ; the above equation can be rewritten as follows:

EQ-TARGET;temp:intralink-;e004;116;671f ¼ Pfa;P ∈ RðlþuÞ×m; m ≪ lþ u: (4)

Thus, the solution space of unknown labels is reduced from the larger space f to a smaller
space fa. We use k-means clustering centers as anchors. It is believed that these clustering
centers have strong representation power to adequately cover the full dataset.

With respect to the matrix P, we use local anchor embedding32 to reconstruct any data point
as a convex combination of its closest anchors. Therefore, the matrix P can be determined by

EQ-TARGET;temp:intralink-;e005;116;578 min JðPÞ ¼ 1

2
jX − PAj2 s:t: Pij ≥ 0;Pi1 ¼ 1; (5)

where X denotes a data matrix in which every row is a data sample. A ∈ RðlþuÞ×d is the anchor
matrix in which every row is an anchor. P ∈ RðlþuÞ×m is the data-anchor mapping matrix, which
is to be learned. Using the matrix P, the graph can be represented by its adjacency matrix
W ¼ PΛ−1PT . The diagonal matrix Λ ∈ Rm×m is defined as Λkk ¼

Plþu
i¼1 Pik.

After obtaining the mapping matrix P, through a semisupervised learning framework, the
labels of unlabeled data can be predicted easily. More detailed information can be found in
Ref. 27.

3 Methodology

In this section, the detailed implementation of the proposed method is described. The overall
framework of the proposed method is shown in Fig. 3. Specifically, the proposed change
detection method is composed of two main stages:

Fig. 3 Flowchart of the proposed SAR image change detection method based on frequency-
domain analysis and random multigraphs. (a) The log-ratio operator is first used to generate
a DI, and then frequency-domain analysis is utilized to obtain changed region candidates.
(b) Representative sample pixels are selected from changed region candidates using FCM.
Image patches are generated around each pixel, and these features are fed into random multi-
graphs for classification. Finally, the final change map can be obtained from the classification
results.
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• Stage 1—Coarse changed regions localization using frequency-domain analysis. The log-
ratio operator is first used to generate a DI. Then, frequency-domain analysis is utilized to
obtain salient and distinctive regions. These regions are selected as changed region
candidates and will be further classified in Stage 2.

• Stage 2—Fine changed regions classification based on random multigraphs.
Representative samples pixels are selected from changed region candidates by FCM clus-
tering. These pixels are treated as labeled samples. Image patch features are generated
around each pixel, and these features are fed into random multigraphs for classification.
From the classification result, we can get changed pixels and thus obtain the final
change map.

3.1 Coarse Changed Regions Localization Based on Frequency-Domain
Analysis

Given two multitemporal SAR images, I1 ¼ fI1ði; jÞ; 1 ≤ i ≤ M; 1 ≤ j ≤ Ng and I2 ¼
fI2ði; jÞ; 1 ≤ i ≤ M; 1 ≤ j ≤ Ng. The log-ratio operator is utilized to generate the DI ID.
It is computed pixel-by-pixel from I1 and I2 by

EQ-TARGET;temp:intralink-;e006;116;524ID ¼ j logðI1Þ − logðI2Þj: (6)

The changed regions in ID are believed to be salient and distinctive by visual perception.
Thus, we use the saliency detection method to locate changed region candidates. Frequency-
domain analysis24 is adopted here. It uses a low-pass Gaussian kernel for amplitude spectrum
convolution and then obtains the change map. In our implementations, the input DI is resized
to 256 × 256 pixels for Fourier transform. In addition, it is empirically verified that when the
Gaussian kernel size is set to 0.05 · N (here, N is the width of the input image), the saliency
detector obtains the best performance. Thus, we set the kernel size as 0.05 · N in our
implementations.

After obtaining the saliency map, the thresholding method is utilized to generate changed
region candidates. Specifically, pixels with a value greater than a given threshold t will be pre-
served as changed region candidates. After the thresholding operation, interest regions with
salient and distinctive information will be extracted. These regions will be further classified
by random multigraphs. It is well worth noting that t is an important parameter that can affect
the change detection results. The analysis of the parameter will be described in detail in Sec. 4.

3.2 Fine Changed Regions Classification Based on Random Multigraphs

For fine changed regions classification, we first perform FCM algorithm on the changed region
candidates in the DI to partition pixels into three clusters: changed classΩc, unchanged classΩu,
and intermediate class Ωi. Pixels belonging to Ωc and Ωu have high probability to be changed
and unchanged. Specifically, Ωc and Ωu have higher within-class similarity and lower interclass
similarity, and they can be viewed as pure changed and unchanged classes. Therefore,Ωc andΩu

can be treated as reliable labeled samples for random multigraphs.
The neighborhood features of all the pixels in changed region candidates (belonging to Ωu,

Ωc, andΩi) are generated, as shown in Fig. 4. It is well worth noting that, since the properties of a
pixel are highly correlated with its neighborhood, the corresponding patches in the multitem-
poral SAR images are extracted and stacked together as the feature vector of the pixel.
Specifically, an image patch centered at ði; jÞ in image I1 is extracted. The corresponding
image patch in image I2 is also extracted. Both image patches are converted to vectors VI1

ij
and VI2

ij , respectively. Both vectors are concatenated and form a new vector Vij. This process
is illustrated in Fig. 4, and Vij denotes the feature vector at the position ði; jÞ.

Therefore, we obtain neighborhood features of pixels in changed region candidates. These
features are fed into the random multigraphs for classification. Pixels belonging toΩc andΩu are
treated as labeled samples in classification. Through the semisupervised inference in random
multigraphs, it can classify the unlabeled samples into changed class or unchanged class.
From the classification result, we can obtain the final change detection result.
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4 Experimental Result and Analysis

In this section, we evaluate the proposed method on two real SAR datasets and one simulated
dataset. We also compare the proposed method with some existing change detection techniques
to demonstrate its superiority.

4.1 Dataset Description and Experimental Settings

The first dataset utilized in the experiment is the Bern dataset. As shown in Fig. 5, it consists of
two SAR images captured by ERS-2 satellite. The images were captured in April and May 1999,
respectively. During the period between these two dates, the River Aare flooded parts of Bern.
The available ground truth, as shown in Fig. 5(c), was produced via manual marking by the
combination of prior knowledge and photo interpretation.

The second dataset used in the experiment is the San Francisco dataset, as shown in Fig. 6.
It represents a section (256 × 256 pixels) of two SAR images over the city of San Francisco
acquired by ERS-2 SAR sensor. The dataset contains two images acquired in August 2003
and May 2004, respectively. The original images are 7749 × 7713 pixels and are available
in Earthnet.33 The available ground truth, as shown in Fig. 6(c), was produced by integrating
prior knowledge and photo interpretation.

The third dataset, as shown in Fig. 7, is a simulated dataset. The size of the dataset is
256 × 256 pixels. The ground truth is shown in Fig. 7(c). The simulated dataset is partly
from a panchromatic IKONOS image of Beijing, China. Nakagami-distributed speckle patterns
have been synthesized with chosen parameters, and these patterns have been added into the

Fig. 5 Bern dataset: (a) image acquired in April 1999, (b) image acquired in May 1999, and
(c) ground-truth image produced via manual marking by the combination of prior knowledge
and photo interpretation.

Fig. 4 Neighborhood feature generation of each position as the input of random multigraphs.

Gao et al.: Synthetic aperture radar image change detection based. . .

Journal of Applied Remote Sensing 016010-7 Jan–Mar 2018 • Vol. 12(1)



image as speckle noise. The changed regions in Fig. 7(b) have ∼40% enhancement in the ampli-
tude levels compared with the corresponding regions in Fig. 7(a).

The change detection results are shown in the form of binary maps, while the white pixels
denote the changed pixels and the black pixels denote the unchanged pixels. The quantitative
analysis is made on the change detection results to evaluate the performance of the proposed
method. False positive (FP) and false negative (FN) are first calculated. FP is the number of
pixels that are unchanged class in the ground-truth image but wrongly classified as changed
ones. FN is the number of pixels that are changed class in the ground-truth image but wrongly
classified as unchanged ones. Next, we compute the overall error (OE) and the percentage correct
classification (PCC). The OE is computed by OE = FN + FP. The PCC is computed by PCC ¼
ðTPþ TNÞ∕ðTPþ TNþ FPþ FNÞ × 100%, where TN denotes the true negative, which is the
number of pixels correctly classified as unchanged ones, and TP denotes the true positive, which
is the number of pixels correctly classified as changed ones. Finally, the kappa coefficient34 is
computed to give the percentage of agreement (correct classified pixels) corrected by the number
of agreements that would be expected purely by chance. Specifically, kappa coefficient (KC) is
calculated by PCC and Proportional Reduction in Error (PRE) as follows:

EQ-TARGET;temp:intralink-;e007;116;187KC ¼ PCC − PRE

1 − PRE
; (7)

where

EQ-TARGET;temp:intralink-;e008;116;139PRE ¼ ðTPþ FPÞ · ðTPþ FNÞ
ðTPþ TNþ FPþ FNÞ2 þ

ðFNþ TNÞ · ðFPþ TNÞ
ðTPþ TNþ FPþ FNÞ2 : (8)

The proposed method is compared with closely related methods on three SAR datasets.
The methods used for comparison purpose are principal component analysis and k-means
clustering (PCAKM),20 Markov random field and fuzzy c-means clustering (MRFFCM),35

Fig. 7 Simulated dataset: (a) image changed before, (b) image changed after, and (c) ground-
truth image generated via manual marking by integrating prior information with photo
interpretation.

Fig. 6 San Francisco dataset: (a) image acquired in August 2003, (b) image acquired in
May 2004, and (c) ground-truth image produced by integrating prior knowledge and photo
interpretation.
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Gabor feature extractoin and two-level clustering (GaborTLC),18 and nearest neighbor - extreme
learning machines (NR-ELM).15 The results of these methods are implemented using the
authors’ publicly available codes. The MATLAB implementation of the proposed method is
available at Ref. 36. The experimental results of these methods on three SAR datasets will
be discussed in the following subsections.

4.2 Test of the Parameter t

The first experiment is a test of the parameter t. t stands for the threshold for frequency-domain
analysis. It is an important parameter that can affect the final change detection results. Figure 8
shows the relationship between PCC and the parameter t on two real SAR datasets. Take the
results on the Bern dataset as an example; the PCC values are almost the same when t ranges
from 0.04 to 0.10. When t is larger than 0.11, the PCC value decreases slightly. On the San
Francisco dataset, the value of PCC increases when t ranges from 0.04 to 0.11. This is because,
when t is relatively small, many noisy regions will be retained. These noisy regions affect the
performance of change detection. However, when t is larger than 0.12, the value of PCC
decreases. When the value of t becomes larger, the size of extracted salient regions will be
very small and many real changed regions will be neglected. From the results on both datasets,
we observe that when t ranges from 0.10 to 0.12, the value of PCC is stable and satisfying.
Therefore, in our implementations, we set the value of t as 0.11.

4.3 Experimental Results on the Bern Dataset

The experimental results are exhibited in two ways: the final change maps in figure form and the
quantitative analysis in tabular form. Figure 9 shows the final change maps of various methods
on the Bern dataset, and Table 1 lists the values for evaluation.
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C

C
 (

10
0%

)

Fig. 8 Relationship between PCC and the parameter t on two real SAR datasets.

Fig. 9 Visualized results of various change detection methods on the Bern dataset: (a) result by
PCAKM,20 (b) result by MRFFCM,35 (c) result by GaborTLC,18 (d) result by NR-ELM,15 and
(e) result by the proposed method.
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As shown in Figs. 9(a) and 9(b), the PCAKM and MRFFCM wrongly classify some
unchanged pixels into the changed class, which generates some noisy regions. Therefore,
the FP values of PCAKM and MRFFCM are relatively high, as shown in Table 1. As mentioned
before, the proposed method utilized frequency-domain analysis to generate a salient map of the
DI; then, many noisy unchanged regions are suppressed. Therefore, the proposed method works
well in suppressing background noise and achieves the minimum FP value. In addition, the
proposed method achieves the maximum PCC and KC values. It is well worth noting that
the PCC and KC values are persuasive coefficients in change detection results analysis.
Thus, we can draw the conclusion that the proposed method outperforms the other methods
on the Bern dataset.

4.4 Experimental Results on the San Francisco Dataset

The change detection results of different methods on the San Francisco dataset are shown in
Fig. 10. The corresponding quantitative metrics on the change maps generated by different meth-
ods are shown in Table 2. From the visual comparison among these change maps, we can observe
that the PCAKM, MRFFCM, and GaborTLC generate many noise regions, and, in these regions,
many unchanged pixels are falsely classified into the changed class. Thus, the FP values of these
methods are relatively high. High FP values affect the overall performance of these methods. The
NR-ELM and the proposed method obtain similar lower FP values compared with the above-
mentioned methods, as shown in Table 2. However, the FN values of the proposed method are
much lower than NR-ELM. Thus, the proposed method achieves the best PCC and KC values.
Results on this dataset also demonstrate that noisy unchanged regions can be suppressed by
the proposed method. Both visual and quantitative analyses demonstrate the effectiveness of
the proposed method on the dataset.

4.5 Experimental Results on the Simulated Dataset

As for the simulated dataset, the results are shown in Fig. 11 and listed in Table 3. The effects of
speckle noise are quite strong on the dataset. From Fig. 11, we can observe that many unchanged
pixels are falsely classified into the changed class by PCAKM, MRFFCM, GaborTLC, and

Table 1 Change detection results of different methods on the Bern dataset.

Methods FP FN OE PCC (%) KC (%)

PCAKM20 247 119 366 99.60 84.78

MRFFCM35 364 47 411 99.55 84.13

GaborTLC18 135 173 308 99.66 86.27

NR-ELM15 147 146 293 99.68 87.16

Proposed method 55 216 271 99.70 87.24

Fig. 10 Visualized results of various change detection methods on the San Francisco dataset:
(a) result by PCAKM,20 (b) result by MRFFCM,35 (c) result by GaborTLC,18 (d) result by NR-
ELM,15 and (e) result by the proposed method.
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NR-ELM. Hence, the FP values of these methods are relatively high in Table 3. However, the
proposed method can effectively suppress the speckle noise and achieves the lowest FP value.
In addition, the KC value is obviously higher than the other methods, which means the proposed
method is effective in strong speckle noise scenarios.

4.6 Discussion

The proposed method is a promising tool for detecting changed regions from multitemporal SAR
images. As shown in Tables 1–3, the proposed method has better performance than four closely
related methods. The methods used for comparison are PCAKM, MRFFCM, GaborTLC, and
NR-ELM.

From the quantitative analysis listed in Tables 1–3, the proposed method achieves the small-
est OE values and the maximum KC values. False positives generated by speckle noise appear to
be nonsalient regions in the DI, and they are neglected in the process of frequency-domain analy-
sis. Therefore, the proposed method achieves the best performance in FP values on three data-
sets. Moreover, random multigraphs randomly select a subset of neighborhood features to create
graphs; it can exploit the nonlinear relations between multitemporal SAR images and therefore

Table 2 Change detection results of different methods on the San Francisco dataset.

Methods FP FN OE PCC (%) KC (%)

PCAKM20 1618 25 1643 97.49 83.68

MRFFCM35 1511 191 1702 97.40 82.69

GaborTLC18 1376 60 1436 97.81 85.39

NR-ELM15 182 596 778 98.81 90.68

Proposed method 189 255 444 99.32 94.86

Fig. 11 Visualized results of various change detectionmethods on the simulated dataset: (a) result
by PCAKM,20 (b) result by MRFFCM,35 (c) result by GaborTLC,18 (d) result by NR-ELM,15 and
(e) result by the proposed method.

Table 3 Change detection results of different methods on the simulated dataset.

Methods FP FN OE PCC (%) KC (%)

PCAKM20 5588 544 6132 90.94 50.81

MRFFCM35 6883 232 7115 89.14 48.67

GaborTLC18 2866 570 3436 94.76 65.91

NR-ELM15 1090 897 1987 96.97 87.40

Proposed method 154 1364 1518 97.68 89.26
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suppress the speckle noise to some extent. It is evident that the proposed method is good at
suppressing the noisy unchanged regions while preserving details.

5 Conclusion

In this paper, we proposed an SAR image change detection method based on frequency-domain
analysis and random multigraphs. The proposed method follows a coarse-to-fine procedure: in
the coarse changed regions localization stage, the log-ratio operator is first used to generate a DI.
Then, frequency-domain analysis is utilized to obtain changed region candidates. In the fine
changed regions classification stage, representative samples are selected from changed region
candidates using FCM. Then, image patch features are generated around each pixel, and these
features are fed into random multigraphs for classification. From the classification result, we can
obtain the final changed map. The experimental results on both visual and quantitative analysis
have demonstrated the effectiveness of the proposed method.
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